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Abstract
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the
classical limit the dipoles can be described as damped-driven oscillators, which are able to
spontaneously synchronize and collectively lock their phases in the presence of nonlinear coupling.
Herewe investigate the corresponding phenomenonwith arrays of quantized two-level systems
coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that by
incoherently driving dense packed arrays of strongly interacting dipoles, the dipoles can overcome the
decoherence induced by quantum fluctuations and inhomogeneous coupling and reach a
synchronized steady-state characterized by amacroscopic phase coherence. This steady-state bears
much similarity to that observed in classical systems, and yet also exhibits genuine quantumproperties
such as quantum correlations and quantumphase diffusion (reminiscent of lasing). Our predictions
could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum
devices.

1. Introduction

Arrays of synchronized oscillators [1] are ubiquitous in biological [2, 3], physical [4] and engineering [5]
systems and are a resource for technological advances [6]. Although there has been significant progress in the
study of synchronization in classical systems [7], the understanding of the same phenomena in the quantum
realm remains limited. Amajor obstacle so far is the general problemof the exponential scaling of theHilbert
spacewith system size whichmakes calculations dealingwith quantum arrays very challenging. In fact, current
investigations have been limited to the exact treatment of arrays of a small number of coupled quantum
oscillators [8–18], and large ensembles at themeanfield level or by including quantum corrections
perturbatively [19–21]. Highly symmetric situationswith collective couplingmediated, for example, by a cavity
mode [22–24], have also been studied.

Ensembles of radiating dipoles are a natural platform to study quantum synchronization, where coherence
can be generated froman incoherent source. Onemight regard laser systems, where radiation is amplified by the
stimulated emission of photons, as a prototypical example. However, lasing is fundamentally a distinct
phenomenon fromquantum synchronization. This can be seen from the fact that lasing is possible even in the
absence of coupling between the atomic dipoles, as is clear in the single atom laser [25], or in atomic beam lasers
where only one atom is present in the cavity at any given time. Amore relevant situation is the quantum
synchronization that takes place in the context of superradiance [26, 27]. It has recently been understood that, in
contrast to lasers, steady-state superradiance can produce spectrally pure light [26–33] without stimulated
emission. So far this has been demonstrated using a cavitymode as a communication channel that spatially
selects an opticalmode and enhances the coupling (through the cavity finesse). Amore generic and relevant
scenario, with great potential and applicability, is the emergence of spontaneousmacroscopic quantum
synchronization in radiating dipole arrayswithout a cavity but naturally coupled by the intrinsic anisotropic and
long-range dipolar interactions. This is the situation considered in this paper.
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Herewe demonstrate that in the presence of an incoherent repumping source, dipole induced cooperative
emission can dominate over spatial inhomogeneities and quantumfluctuations and lead to a resilient steady-
state that exhibitsmacroscopic quantumphase coherence and intrinsic quantum correlations. An iconic
example of amacroscopic coherent state is a Bose–Einstein condensate, achieved in ultra-cold gases at thermal
equilibrium. In our case, however, themacroscopic order is reached in the steady-state of an interacting and
driven-dissipative system.Moreover, the cooperative behavior can be detected bymeasuring the spectral purity
of the emitted radiation.Wenote that in clear distinction to previous studies [8, 15–17, 19, 21], our proposal
does not rely on an external coherent source or externally generated nonlinearities to seed the collective phase. In
ourmodel synchronization emerges as a spontaneously broken symmetry driven by incoherent processes in
naturally coupled dipole arrays. Aswe show, and somewhat counterintuitively, an incoherent drive is sufficient
to generate phase coherence in these systems.

Specifically, the systemswe consider are dense arrays of frozen quantumdipolesmodeled as quantized two-
level systems. By dense arrays of frozen dipoles wemean arrays separated by a distancemuch closer than the
wavelength of the emitted photons andwithmotional degrees of freedom evolving at amuch slower rate than
their internal dynamics (figure 1). These conditions can be readily satisfied in a variety of quantum systems
found in atomic,molecular and optical physics (e.g., Rydberg gases [34–36], alkali vapors [37], alkaline-Earth
atoms [38], and polarmolecules [39]), chemistry (e.g., J-aggregates of dyemolecules [40–42]), and biology (e.g.,
light-harvesting complexes [43, 44]). In cold vapors, one possible way to freeze themotion and tightly trap the
particles is via an optical lattice potential (figure 1). In this case a sub-optical-wavelength transitionmust be used
in order to reach the tight-packing regime [38, 39].

To fully understand synchronization in the complex dipolar system, we analyze each of the ingredients that
compete and affect synchronization in a step-by-step procedure: the interplay between repumping and
collective emission, inhomogeneity in the coupling constants, quantum correlations, and the competition
between elastic and inelastic interactions. The paper is organized as follows: in section 2we introduce the system
in consideration and themaster equationwe use to describe the dynamics. In section 3we first provide a simple
mean-field description and discuss connections to the classical Kuramotomodel (KM)—the iconicmodel used
to describe synchronization in nonlinear coupled oscillators. In section 4we discuss the phase diagram for the
quantum system assuming collective (all-to-all) coupling in the absence of inhomogeneity and elastic
interactions, and compare it with themean-field solution. For this exactly solvable case we are able to explicitly
quantify the entanglement and correlations present in the steady state. In section 5we study how inhomogeneity
in the inelastic couplings affects synchronization and focus on the case of power-law decaying interactions. In
section 6we study the emergence of quantum synchronization in radiating dipoles taking the full long-range and
anisotropic dipolar interactions into account. Specifically, we consider a one-dimensional geometry, where both
the elastic and inelastic interactions can vary significantly accross the dipoles and can be easily adjusted. In

Figure 1.Arrays of quantumdipoles spontaneously emit and absorb photons at rateΓ. The photonsmediate dipolar interactions
between dipoles separated by a distance rab with both dissipative, f r( )ab , and elastic, g r( )ab , components. A repumping source at a
rateW provides energy tomaintain the oscillations and can be implemented using additional internal states that are not shown. (a) A
possible implementation using cold atoms in an optical lattice. (b) The dipolar couplings g r( )ab and f r( )ab exhibit a complex angular
distribution as a function of θ, the angle between the dipole orientation (determined by an external electromagnetic field) and rab∣ ∣.
Themaximumvalue of f and g forfixed rab∣ ∣ is denoted as fmax and gmax . The cone illustrates themagic angle, arccos(1 3 )mθ = .
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section 7we discuss experimental implementations of ourmodel, and in section 8we provide a conclusion and
an outlook.

2.Dipole–dipole interaction andmaster equation

In this workwe consider arrays of quantumdipoles with two accessible levels, whichwe denote as ∣ ↓ 〉 and ∣↑〉.
The interactions between two dipoles a and b are described by the functions g r( )ab and f r( )ab , which depend on
the dipoles’ separation, rab∣ ∣, and the angle θ between themean dipolemoment and the vector joining the
dipoles [38] (see figure 1(a)):
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Here, r2ab abζ π λ= ∣ ∣ , where λ is the characteristic wavelength of the dipole-transition, and f (0)Γ = is the
spontaneous photon emission rate from a single dipole. The function g r( )ab describes the elastic dipole–dipole
interactions4, while f r( )ab gives rise to inelastic collective photon emission. These terms are similar to those that
determine the radiation of classical electric dipoles, and the dependence on rab∣ ∣ reflects the propagation of
photons fromone atom to another. The terms 1 abζ∝ account for retardation effects in the far-field regime and
those 1 ab

3ζ∝ account for instantaneous propagation in the near-field.When 1abζ ≪ , the elastic g interactions
with a strong angular variation are dominant except close to themagic angle arccos(1 3 )mθ = , at which they
are greatly suppressed. In contrast, f r( )ab is almost isotropic in the near-field regime (see figure 1(b)).

The spatially uniformbehavior of f r( )ab at short distance is what gives rise to cooperative effects and
superradiant emission [26]. Under generic conditions, however, superradiance is a transient effect that
substantially limits the lifetime of dipole excitations. To compensate for the fast decay herewe add an incoherent
repumping driving term at a rateW. This term is needed to generate a synchronized steady state where long-
lasting coherence persists. An incoherent repumping drive is commonly used in laser systems tomaintain
population inversion. It can be implemented by coherently driving, at a rateΩ, the ∣ ↓ 〉 state to an excited level
that spontaneously decays, at a rate γ ≫ Ω, to the state ∣↑〉 [48]. Due to the fast depletion of the excited state, it
can be adiabatically eliminated and thus the net process is just an incoherent transfer of population from ∣ ↓ 〉 to
∣↑〉 at a rateW 2 γ= Ω (see appendix A for details).

The evolution ofN dipoles ismodeled by a quantummaster equation for the reduced densitymatrix ρ̂ of the
dipoles [26]:

t
H

d ˆ

d

i ˆ , ˆ ˆ ˆ , (1)f W0
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ ρ ρ= − ℏ + + 

H g rˆ
2

ˆ ( ) ˆ ˆ , (2)
a

N

a a
z

b b a

N

ab a b0

1 1,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑δ σ σ σ= ℏ − +

= = ≠

+ −

( )f rˆ
1

2
( ) 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (3)f

a b

ab b a a b a b
,

⎡⎣ ⎤⎦ ∑ρ σ ρσ σ σ ρ ρσ σ= − −− + + − + −

( )W
ˆ

2
2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (4)W

a
a a a a a a

⎡⎣ ⎤⎦ ∑ρ σ ρσ σ σ ρ ρσ σ= − −+ − − + − +

TheHamiltonian Ĥ0 generates the coherent evolution of the dipole arraywhere ˆa
z( , , )σ + − are the Pauli spin

operators for dipole a, aδ denotes its oscillation frequency in the rotating frame defined by themean frequency of
the dipole ensemble, and ℏ is the reduced Planck constant. The Lindblad operator functionals, f W, , describe
the inelastic photon emission and incoherent repumping processes, respectively.

4
For generic cases, the pathological divergence of g r( ) at r 0= can be removed by introducing an additional term into the expression of

g r( )ab , r( )
k ab

4

3 3δ− π [45, 46]. This gives rise to the so called Lorentz–Lorentz shift [47]. For the discrete arrays we consider in this work, there is
always a cut-off distance and thus no divergence. For example, in the suggested implementation using Sr atoms that is discussed in section 7,
the cut-off distance is determined by the optical lattice spacing.
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3.Mean-field treatment and connection to theKM

To obtain a qualitative picture of how synchronization can happen among the dipoles, wefirst perform amean-
field treatment and show the close connection between our quantummodel and the prototypemodels for
classical synchronization. Themean-field approach assumes uncorrelated dipoles, i.e., ˆ ˆa aρ ρ= ⊗ , where each

â a, ,

,∑ρ ρ σ σ= ∣ 〉〈 ′∣σ σ
σ σ

′=↑ ↓
′ is a 2 2× matrix in the pseudospin 1 2 basis { , }∣↑〉 ∣ ↓ 〉 . The components of the

single-dipole densitymatrix, âρ , can be visualized as a Bloch vector S t t S t t S t{ ( )cos ( ), ( )sin ( ), ( )}a a a a a
zφ φ⊥ ⊥ =

(1 2){ , i( ), }a a a a a aρ ρ ρ ρ ρ ρ+ − − −↑↓ ↓↑ ↑↓ ↓↑ ↑↑ ↓↓ (figure 2). Themean-field solution yields a systemof coupled

nonlinear differential equations for a
,ρσ σ′. For each a N1, 2 ,...,= the parameters evolve as
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Figure 2. (a)Mean-field phase diagram calculated from the order parameter Z0 1 8⩽ ⩽ . The insets show snapshots of the tips of
the Bloch vectors (red points) for dipoles preparedwith random initial phases and then evolved to steady-state in both regimes. (b)
Quantumphase diagram calculated from Z0 1 8Q⩽ ⩽ . (c) The time evolution of the conditional QFI exhibits entanglement
(dashed line: single trajectory, solid line:mean value of a few trajectories). Panel (d) shows the steady stateQFI versus W Γ after
averaging overmany trajectories. The solid line corresponds to the conditional case, and indicates entanglement over the repumping
rangewhere synchronization exists. Upon computing the ensemble average one recovers the reduced densitymatrix which leads to a
calculatedQFI below the entanglementwitness threshold (dashed line). (c) and (d) are shown for f 15eff = Γ. For all panels,

g r( ) 0a abδ = = and f f Nr( )ab eff= .
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where t t t( ) ( ) ( )ba b aδφ φ φ= − . The termproportional to f r( )ab in equation (7) that contains the sine function
can be identifiedwith a similar term in theKM[49]:
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whereK, the coupling strength per oscillator,must be large enough and positive for synchronization to occur.
The termproportional to g r( )ab that contains the cosine function appears in the Sakaguchi–Kuramotomodel
[50]—amore general but similar synchronizationmodel to theKM.Compared to the basic KM, the situation
here ismore complex. This is due to the fact that in equation (7) the coupling constants are nonuniform and
effectively time-dependent, since S t( )a

⊥ and S t( )a
z are dynamic variables.

To investigate whether themean-fieldmodel admits spontaneous synchronizationwe consider first the
simplified casewhere 0aδ = for all dipoles, impose g r( ) 0ab = for all pairs, and assume a constant collective
decay rate Nf r f( )ab eff≡ .We define a global order parameterZ as Z Se e

N a a
i 1 i a∑= φΦ ⊥ and look for a solution

inwhichZ is time-independent and synchronized oscillators possess a collective frequency ω , and thus a
macroscopic phase tωΦ = . These conditions lead to two equations for the order parameterZ and the collective
frequency ω (see appendix B):

0, (9)ω =

Z
f W W
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The solution is shown infigure 2(a). The insets show the phase distribution in the steady-state for an array of
oscillators initially preparedwith a randomdistribution of phases for two different values of the repump rateW.
For a slow repumping rate (bottom inset), the system remains unsynchronized. As the repumping rate is
increased beyond a threshold value, the system enters a synchronized state, as can be seen by the appearance of
phase locking and the resulting narrowphase spread (top inset). This can be explained by the fact that one
necessary condition for synchronization in theKM is K 0> , which translates to the requirement S 0a

z > on
average in ourmodel and thus the need to have sufficiently large repump rate. In the limit feff ≫ Γ (e.g., for
largeN),maximum synchronization is achieved atW f 2opt eff= , where the order parameterZ reaches a
maximumvalue Z 1 8max ≈ . For this optimal condition for synchronization the quantumdipoles are ordered
with the same phase and radiate with atomic inversion S 1 4a

z ≈ . Note that themaximumorder parameter is
smaller than1 2 evenwhen fully synchronized because of this required finite value of the atomic inversion. One
intriguing aspect is that repumping, which is the process that builds up synchronization, is itself an incoherent
process. It is crucial that repumping does not preserve the normof the collective Bloch vector, allowing it to
extend or contract. For largeW Wopt> ,Z decreases again reflecting a suppression of synchronization. In this
limit the dipoles are repumped so fast that they are all driven to the ∣↑〉 state (S 1 2a

z → and S 0a →⊥ ) and phase
coherence between them cannot build up.

The cases of a heterogeneous distribution of aδ ʼs can be treated at themean-field level in a simple way. The
results, summarized in the appendix B, are qualitatively similar. In general, the inclusion of a finite spreadΔ in aδ
decreases the value of the order parameterZ. For instance, if aδ is sampled from a Lorentzian distribution
p ( ) [ ( )]a a

2 2δ π δ= Δ Δ + ,

Z
f P Q f P

f

2 2

2
, (11)

eff
2 2 2

eff

eff

=
− + Δ − Δ Δ +

where Q W= Γ+ and P W= − Γ. Optimal synchronization is obtained at a smaller repumping rate,
W f 2 2opt eff≈ − Δ .We note that for given feff andW, synchronization is destroyed (that is,Z= 0) at

Q f P Q( ) (2 )c
2

effΔ = − .
For the case withfinite g r( ) 0ab ≠ , equation (7) predicts dephasing caused by different g r( ) 0ab ≠ , and a

global rotation that does not affect synchronization if all g r( )ab are identical (see appendix B).However, the
mean-field ansatz is not appropriate for treating the case where elastic interactions are present since it neglects
quantum entanglement between dipoles. The case withfinite g r( )ab will be discussed in section 6 by exactly
solving themany-body problem.
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4.Quantum synchronization for the collective system

In the simplified case where 0aδ = for all dipoles, g r( ) 0ab = for all pairs, and a constant collective decay rate
Nf fr( )ab eff≡ , it is possible to exactly solve equation (1), i.e., the full quantumdynamics, even formany
particles, allowing us to benchmark the validity of themean-field solution. This is due to the invariance of the
master equation under individual dipole permutations that reduces the scaling of the Liouville space from
exponential, 4N , to polynomial, of orderN3 [51].

4.1. Phase diagram
Quantumfluctuations can lead to phase diffusion and to decay of single particle coherences in the steady-state (it
is possible for ˆ 0aσ〈 〉 →+ even in a synchronized state), soZ cannot be used as ameasure of synchronization in a
beyondmean-field treatment. However, phase locking in quantummechanics can be quantified by the degree of
spin–spin correlationsZQ, defined by Z ˆ ˆQ a b

2 σ σ≡ 〈 〉+ − , where the bar indicates an average over all pairs of different

dipoles a and b. For an unsynchronized stateZQ is 0 and for a completely synchronized stateZQ is Z 1 8Q
max =

[28, 29]. The corresponding phase diagram, shown infigure 2(b), closely resembles themean-field one.
To demonstrate thatZQ can be used to quantify the emergence of quantum synchronization, regardless of

the inherent non-equilibrium and dissipative character of our system,we have also computed pairwise two-time
correlation functions (see appendix B). The decay rate of these correlations encodes information about the
spectral coherence of the emitted radiation. The range ofW Γ values where the emitted light ismaximally
coherent agrees with the regimewhere the system is optimally synchronized according toZQ.Moreover, we have
also confirmed themoderate importance of higher order correlations in the synchronized steady-state by
comparing the exact solutionwith a cumulant expansion calculation (which includes lowest order corrections to
themean-field result).Wefind the cumulant expansion agrees well with the exact solution (see appendix B). The
only limit where there are important deviations is at veryweak pumpingW ≪ Γ where the system favors
subradiant emission arising from strong atom–atom correlations (indicated by the purple region in
figure 2(b)) [51].

4.2.Quantum correlations and entanglement
The robustmacroscopic quantum coherence exhibited by the synchronized state leads to the natural question of
whether or not entanglement can be present in the steady-state even in this dissipative environment.Most
previous studies that attempted to address this question have been limited to small systems [13, 18, 21, 52] and
focused on the entanglement between a pair of synchronized oscillators. Here, to determine the non-separability
of themany-body steady-state, we compute the average of the quantumFisher information (QFI) and use it as
an entanglement witness [53, 54] (see appendixD). AnyN particle state with N N F N( 2 ) 3 ¯ ( ˆ) 2 3Q

2 ρ+ ⩾ > is
entangled (non-separable) and a quantum resource for phase estimation (see appendix C for details).

Due to dissipation, the densitymatrix of the system is reduced to amixed state, as obtained from
equation (1), which describes the dynamics of the system after a statistical average overmany experimental trials.
However, the evolution of the system for an individual experimental realization can be quite different.We
consider aGedanken experiment inwhich onemonitors the system evolution and keeps ameasurement record
of the emitted photons. The evolution of the system is then conditioned on themeasurement record [55, 56].
This type of conditional evolution has beenwidely studied in quantumoptics and utilized togetherwith
quantum feedback control in examples such as the optimal generation of spin squeezed states (see [57, 58]). It
should be emphasized that the conditional evolution based on themeasurement record gives a quantum
trajectory that should not be regarded simply as a numerical tool to allow the efficient assembly of ensemble
averages. Each quantum trajectory is a potentially realizable physical outcome (even if hard to perform in
practice) as allowed by the quantumdynamics of the open quantum systemunder consideration.

We calculate F̄ ( ˆ )Q cρ (with the c in ĉρ meaning conditional) for each conditional trajectory and infigure 2(d)
we show its average over a sufficiently large set of trajectories at steady state (see appendix C). For this
conditional evolutionwe observe entanglement in a parameter regime that correlates with Z 0Q > (see
figures 2(c) and (d)). On the other hand, if we discard the information present in themeasurement record, by
using the ensemble averaged ρ obtained fromdirectly solving equation (1), and then computing F ( ˆ)Q ρ , theQFI
falls below the entanglementwitness threshold (see figure 2(d)).

To differentiate quantum effects from classical ones, we further calculate the quantumdiscord  (see
appendixD), which can be considered as ameasure of quantum correlationmore general than entanglement
andmore robust in a dissipative environment [59, 60]. Separable states with nonzero  are intrinsically
nonclassical, since localmeasurements performed on a subsystem inevitably disturb thewhole system [59, 61].
Wemeasure classical correlations of the steady state by the difference between themutual information  (see
appendixD) and .We find themixed steady-state contains nonzero quantum correlations in the synchronized
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regimefigure 3(a).Moreover we observed that although both  andZQ exhibit a similar dependencewith
pumping rateW, they do not exactly peak at the same value [15].

Although the existence of a nonzero  has been reported to exist in several quantum synchronization
studies [18, 61], wewant to emphasize that those have been always limited to small systems. To our knowledge
our calculations are the first to consider  inmacroscopic samples. Infigure 3(b)we show the dependence of 
with system size. Our calculation shows that quantum correlations remain a significant fraction of  even in the
thermodynamic limit.

5. Synchronizationwithfinite-range interactions

Up to this point we have only considered all-to-all interactions; nowwe consider the effect offinite range
interactions on synchronization. In the dipole array both f r( )ab and g r( )ab are nontrivial functions of rab and
contain terms decaying as a power-lawwith distance, r1 ab∝ ∣ ∣α with 1, 2, 3α = . Instead of dealingwith all these
terms together, to gain insight on how spatial inhomogeneities affect quantum synchronization, wefirst study a
simpler case assuming a power-law cooperative decay f r r( )ab ab∝ ∣ ∣ α− , with the exponent α as a variable
parameter and set both g r( ) 0ab = and 0aδ = .

In the classical regime [62–65], analytical calculations and numerical simulations considering arrays of
oscillators interacting via power law interactions on a one-dimensional lattice had identified 3 2cα = as the
critical value of the power law exponent belowwhich long-range phase order is possible [64]. For cα α< , a
transition to a state inwhich afinite fraction of the oscillators is entrained takes place for a sufficiently strong but
finite coupling strength in the large system limit. Generalizations of these results to oscillators inD dimensions
[64] have also identified three different regimes for synchronization: perfect phase ordering for Dα ⩽ ,
entrainment with long-range phase order for D3 2α < and a crossover to exponential decay of correlations at

D(3 1) 2α = + . Reference [65] has also suggested that in the regime Dα > global synchronization is absent
but local synchronization persists for arbitrary weak couplingwith a slowly decaying order parameter.

To quantify the effect offinite-range interactions on synchronization in the quantum regimewe compute
spin–spin correlationswithin linear clusters that contain d dipoles, Z( ) ˆ ˆQ

d
a b d

2 σ σ≡ 〈 〉+ − , using a cumulant
expansionmethod as described in appendix C.Here the bar followed by a subscript d indicates an average over
the pairs of different dipoles a and b contained in a linear cluster of size d. The linear clusters start at the central
spin as shown infigure 4.We have confirmed that the cumulant expansionmethod reproduces well the
correlation functions by performing direct comparisonswith the exact solution (see appendix C). Figure 4(a)
shows the behavior of ZQ

d as a function of cluster size d and power-law decay exponent α in arrays of dimension

D=1 and 2. Clear global synchronizationwith an order parameter ZQ
d independent of d is observed for Dα ≲ .

For D0 2α< ≲ , the local order parameter ZQ
d is almost independent ofα and d and the systembehaves almost

like the all-to-all system. For D D2 α≲ ≲ synchronization remains global and almost independent of d, but
the order parameter slowly decreases withα. For Dα ≳ , synchronization becomes local and correlations
quickly decrease with cluster size. Themagenta contour provides an indicative scale of the boundary between
global and local synchronization. Thewhite contour lines also provide information about the decrease of the
order parameter with increasing α and d.We observe that, as in the classical case, Dα ∼ roughlymarks the
transition between global and local synchronization, although amore quantitative comparisonwould require
far larger systems.

Figure 3.Quantum correlations and total correlations. The total and quantum correlations in the steady state are quantified by the
mutual information 0 2⩽ ⩽ and quantumdiscord 0 2⩽ ⩽ . (a) In the synchronized phase, there are nonzero quantum
correlations and classical correlations ( − ), and both show a dependence onW that qualitatively agree withZQ. (b) Even in the
thermodynamic limit, quantum correlations remain a significant fraction of the total correlations. For both panels, g r( ) 0a abδ = =
and f f Nr( )ab eff= .
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An alternative way to characterize domain formation and the fact that it can persist evenwhen there is a
variation in the local detunings, 0aδ ≠ , is to examine pairwise two-time correlation functions,
Z t( ) lim ( ˆ ( )a b

t
a, τ σ τ≡ 〈 +

→∞
+ t t tˆ ( ))( ˆ ( ) ˆ ( ))b a bσ τ σ σ+ + + 〉+ − − , which can be related to the emission spectrumof the

pair of atoms [55]. The oscillations in Z ( )a b, τ encode information about the relative precession rate between
different dipoles. By parameterizing Z ( )a b, τ as Z A( ) cos( )exp( )a b ab, τ ν τ γτ= − we can extract the relative
precession frequency abν between dipoles a and b, where entrainment of dipoles a and b corresponds to 0abν = .
To explore the entrainment of dipole pairs in our system, we assign randomdetunings distributed uniformly in
[ 2, 2]−Γ Γ to a linear chain ofN=200 dipoles and calculate abν for b 1, 2 ,..., 100= with a=101
corresponding to the central dipole in the chain. Synchronization regimes similar to those shown infigure 4(a)
are observed for thisD=1 system, whichwe illustrate infigure 4(b) by plotting a histogram (top panel) and the
distribution of frequencies ν (bottompanel) for three values ofα. For global coupling, 0α = (dark blue
symbols), all the dipoles become entrainedwith each other ( 0ν = ), indicating complete synchronization; for

0.65α = (red symbols) dipoles split into entrained ( 0ν = ) and drifting ( 0ν ≠ ) groups.While not all dipoles
are entrained, the entrained dipoles are distributed along thewhole array, and thus synchronization is still
global; and for 2α = (light blue symbols) themajority of dipoles are not entrained. These observations of
relative precession frequencies between pairs of oscillators are consistent with the regimes obtained from the
order parameter plotted infigure 4(a).

6. Synchronization of dipoles with elastic interactions

Wenow treat the full problemof radiating quantumdipoles incorporating elastic interactions g r( )ab and the
intricate competition of spatially-dependent and anisotropic couplings (both g r( )ab and f r( )ab have termswith
power law dependence 1, 2, 3α = on distance) (figure 1).We solve the fullmaster equationwithout any
approximation [55] for systems of up to twenty dipoles in a chain using the actual spatial dependence of both
f r( )ab and g r( )ab , and set 0aδ = .We observe a robust synchronized state that exists in awide parameter space.
As long as f Nf r( )abeff ≡ is large enough, wefind that synchronization takes place and is only weakly affected by
substantial differences in g r( )ab , e.g., variations in the dipole array thatmodify g r( )ab by two orders of
magnitude only decrease the order parameter by a factor of two (figure 5) in the steady state. This is in striking
contrast to the situation in a systemwithout dissipation, where the elastic interaction is known to generate
entanglement between spins and to cause a decay of the order parameter during time evolution [66].

For the orientation arccos(1 3 )mθ = , the order parameter reaches a significant fraction of ZQ
max,

indicating the emergence ofmacroscopic spontaneous synchronization of the radiating quantumdipole array
(figure 5). To further emphasize the relevant role played by the inelastic term, infigure 5(b)we compare a
solution of themaster equation (equation (1)) for two cases: a systemof coupled dipoles arranged in a 1D chain
and oriented at themagic angle (symbols) and an array of identically coupled dipoles with the same feff but

Figure 4. (a) Spin–spin correlations, ZQ
d , in linear clusters containing d dipoles at optimal repumpingW for power-law couplings

f r( ) ( )ab r4

a

ab
= αΓ with lattice spacing a.We set g r( ) 0a abδ = = and considerN=900 dipoles arranged in both linear (D=1) and

square lattice (D=2) geometries. For Dα ≲ global synchronization is observed and the order parameter is independent on cluster
size d. For D α≲ the order parameter starts to clearly decaywith increasing d. Themagenta line (Z 0.14Q

d = ) provides an indicative
scale of the boundary between global and local synchronization. Thewhite contour lines provide an indication of the decrease of the
synchronized domains with increasing α. (b) Pairwise two-time correlation functions in the steady-state are parametrized by
Z A( ) cos( )exp( )a b, τ ντ γτ= − where a is chosen as the central dipole of a linear chain ofN=200 dipoles. The dipoles are assigned
randomdetunings aδ distributed uniformly in [ 2, 2]−Γ Γ . The dark blue, red, and light blue symbols correspond to 0, 0.65α = and
2, respectively. The histogramof frequencies ν exhibits similar synchronization regimes than those seen in (a).

8

New J. Phys. 17 (2015) 083063 BZhu et al



experiencing only inelastic interactions [ g r( ) 0ab = , dashed lines]. The calculated order parameters agreewell
for the two different cases. The similar behavior demonstrates that in spite of the complex geometry of the
dipolar interactions, the capability of the dipole system to synchronize can be characterized to great extent by the
quantity feff .

7. Experimental implementation

Our calculations above demonstrate the potential for synchronization in a dense array of dipoles. Theflexible
and precise control exhibited by ultracold atomic systemsmake them ideal platforms to experimentally
investigate the synchronization phenomenon predicted here. Atomic systems operate with a large number of
quantumoscillators and also allow for the tunability of the interaction parameters over a broad range.

One possible set-up to observe synchronization consists of arrays of ultracold Sr87 atoms prepared in two
electronic internal states that form the two-level system. The ∣ ↓ 〉 could then correspond to the long-lived

P5s5p 3
0 state, with an intercombination line narrower than 10 3− s 1− . This is the state used to operate themost

precise atomic clocks [67]. The ∣↑〉 could correspond to the D5s4d 3
1 state with a natural linewith

290 103Γ = × s 1− . Both states can be trapped in an optical lattice at themagicwavelength a 0.2= μm[38], that
generates the same trapping potential for both statesminimizing Stark shifts and inhomogeneities in the
coupling constants. The dipole–dipole interactions aremediated by photons at thewavelength 2.6λ = μmand
thus, as shown infigure 5, the ratio a 0.08λ < falls in the parameter regimewhere dipoles can be synchronized.

By changing the angle between the laser beams used to form the lattice potential, the lattice spacing can be
varied allowing tunability of the interaction strength between dipoles. The incoherent pumping can be realized
by coherently transferring the P5s5p 3

0 population to one or several appropriate intermediate states that decay
rapidly to the D5s4d 3

1 state [68]. An examplewould be the P4d5p 3
1 state [69].

The polarization of the dipoles can be oriented in an arbitrary direction by an electromagnetic field.
Although all the dipoles cannot be oriented at themagic angle in a 3D geometry, onemay still suppress the elastic
interactions by dynamical decoupling techniques adopted fromNMR[70]. Those have been already
demonstrated in ultracold polarmolecule systems [39]. Another possibility is to use a spatial configuration of
externalfields that induces an ‘averaging out’ of the dominant elastic interactions [71].Moreover, by slightly
departing from themagic-wavelength condition, the dipoles can be subjected to onsite inhomogeneities that
generate different detunings aδ .

The phase synchronization can be probed bymeasuringZQ, which experimentally can be directly obtained
from the fluorescence intensity. As suggested in section 5, phase locking can also be extracted from two-point
correlationswhich can be determined by analyzing the fluorescence spectrum [68].

Figure 5. (a) Synchronization in dipole arrays is demonstrated forN=12 dipoles on a linewhen subjected to incoherent pumping
(optimal rate). In this geometry, regardless of the strong angular variation of gwith the lattice spacing a (see contours) the order
parameter,ZQ, (normalized by Z 1 8Q

max = ) exhibits a weak dependence on θ and a and reaches amaximumat mθ θ= . (b) The
order parameter is computed forN=16 dipoles on a linewith mθ θ= and f f Nr( ) ( 1)

a b a abeff ,
∑= −≠

(symbols), and for a system

with constant f f Nr( )ab eff= and g r( ) 0ab = (dashed line)s. Similar dependence onW is found for these twodifferent systems.Here
the order parameter for dipoles is always smaller in the presence of elastic interactions.

9

New J. Phys. 17 (2015) 083063 BZhu et al



An intriguing but alsomore speculative and less controllable realization of our quantumdipolemodel is the
case offluorescent organicmolecules. A possible two-level configuration in those systems consists of a
vibrational level of the ground electronic potential chosen as ∣ ↓ 〉 and the lowest vibronic level of thefirst excited
potential chosen as ∣↑〉. Incoherent pumping can be realized by driving an optical transition to a higher excited
vibronic level φ∣ 〉 in thefirst excited potential, which decays on picosecond timescales to the state ∣↑〉 via non-
radiative transitions [72]. Typical values of thefluorescencewavelength fλ and lifetime fτ for organic
chromophores under a variety of environmental conditions put these systems in a regime of near optimal
synchronization. For instance, pseudoisocyanine chloride (PIC) andmerocyanine derivatives commonly used
in organic light-emitting diodes [73–76] typically form low-dimensionalmolecular aggregates in liquid solution
with a 0.5 2.0≈ − Å, and ratios a fλ on the order of 10 3− . The typical fluoresence decay rate for these organic
chromophores is 0.1 1Γ ∼ − GHz [72]. In order to achieve W 1Γ = and enter the synchronized phase, the
required pumping laser intensity is I 1 10W ∼ − kW cm−2, which is lower than the theoretical lasing threshold
intensities I 0.1 1th ∼ − MWcm−2 of dye lasers [72]. Therefore, it should be feasible to achieve steady state
synchronization of organic dipoles via incoherent optical driving.

8. Conclusion

Wehave demonstrated that a systemof radiating quantumdipoles can be synchronized in the presence of
repumping. Our analyticmean-field approach provides a direct analogy between synchronization of quantum
dipoles and synchronization of classical phase oscillators. Using exact solutions of themaster equation and a
cumulant expansion approach, we determined the necessary conditions for synchronization, and the
entanglement properties in the steady state ofmacroscopic ensembles under differentmeasurement protocols.
We also analyzed the effect offinite-range interactions in large arrays. To our knowledge those have been
previously explored only in the classical regime. These calculations, although restricted to g r( ) 0ab = ,
emphasize how the interplay between incoherent repumping and cooperative dipole decay can give rise to
robust quantum synchronization. For treating the general case of dense packed dipoles, we numerically solved
themaster equation exactly for up to twenty dipoles, and studied the effect of elastic interactions. The one-
dimensional geometry chosen allows us to tune the dipolar interactions accross awide range of parameters by
simply adjusting the spacing and polarization angle, and investigate the competing roles of the elastic and
inelastic interactions. One-dimensional systems are amenable for theoretical investigation since they help us to
minimizefinite size effects. They can be implemented in current experiments using ultra-cold gases and are
relevant for the suggested implementation using organicmolecules. There are several organic species such as
PICmolecules [74] that are known to formquasi-one-dimensional arrays both as single crystals and in liquid
solution. These systems are typicallymodelled as 1D arrays of two-level dipoles with energetic disorder tomatch
spectroscopic data [77]. For this configuration, we found synchronization in the presence of a large variation of
elastic interactions.We expect that inmore general geometries, similar degree of synchronization could be
achieved provided the collective dissipative coupling feff dominates over the elastic pairwise couplings, g r( )ab .
These conditionsmight be easier to be satisfied in higher dimensional dense packed dipolar arrays given the
anisotropic character of the elastic termswhich fluctuate both in sign andmagnitude across the array. In higher
dimensions, geometric effect becomesmore important. Nevertheless, whether or not spontaneous
synchronization in dipole arrays can be observed undermore generic high dimensional geometries remains an
open question.

Our results show that the intrinsicmacroscopic coherence of the superradiant steady state is inherently
resilient to single particle decoherence, spatial inhomogeneities, and noisy environmental effects. This
observation could have relevant application to the development of low-threshold organic lasers, highly efficient
solar cells,materials with enhanced chemical reactivity, as well as ultra-precise quantumdevices, where these
effects are anticipated to play an important role.Moreover, since quantum synchronization is imprinted in the
spectral purity of the emitted radiation [29], the generated lightmay potentially serve as a direct diagnostic tool
of quantum coherences in generic systems beyond cold gases such as organicmolecules.
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AppendixA. Incoherent pumping

The simplest realization of the repumpingmechanism can be explained using a three-level system, as depicted in
figure A1 . Practically, the repumping process could involve amore complicated setup viamultiple intermediate
levels, but the three-levelmodel is sufficient to capture the relevant physics. The states 1∣ 〉 and 2∣ 〉 correspond to
the ∣ ↓ 〉 and ∣ ↑ 〉 states of our two-level dipole system, and level 3∣ 〉 is an auxiliary state. The 1 3∣ 〉 ↔ ∣ 〉 transition
is coupled to amonochromatic lightfield Eex with frequency Lω . The coupling strength is determined by the
Rabi frequency d E·13 exΩ = , with d13 the dipolemoment of transition 1 3∣ 〉 ↔ ∣ 〉. For the appropriate light
polarization and frequency, the electromagnetic field Eex only drives the transition 1 3∣ 〉 ↔ ∣ 〉. The state 3∣ 〉 is
however chosen such that it spontaneously decays to level 2∣ 〉 at a rate γ ≫ Ω ≫ Γ. For simplicity, butwithout
loss of generality, we assume the driving field is on resonancewith the transition 1 3∣ 〉 ↔ ∣ 〉, thus the atom-field
interaction is given by theHamiltonian term V̂ ( 2)( ˆ ˆ )31 13σ σ= Ω +Ω , wherewe have used the projectors

i jˆijσ = ∣ 〉〈 ∣. The dynamics of such a three-level system can be described by the followingmaster equation:

( ){ }t
V

d ˆ

d
i ˆ , ˆ

2
2 ˆ ˆ ˆ ˆ ˆ , ˆ , (A.1)23 32 32 23

⎡⎣ ⎤⎦ρ ρ γ σ ρσ σ σ ρ= − + −Ω

where ρ̂ represents the reduced state in a frame rotating at the driving frequency Lω . Note that for the present
discussionwe have not included the decay rateΓ since it is assumed to bemuch slower than γ and is accounted
for in equation (3). From the resulting equations ofmotion, we can adiabatically eliminate the variables
associatedwith the state 3∣ 〉. The reason is that in the steady state the following stationary conditions are satisfied:

0
t

d

d
32 →ρ

and 0
t

d

d
13 →ρ

, j iˆijρ ρ≡ 〈 ∣ ∣ 〉. In addition, 033ρ ∼ , due to the fact that γ ≫ Ω, and thus in steady state
the population of 3∣ 〉 remains negligible. After the adiabatic elimination, the equations ofmotion for the states
1∣ 〉 and 2∣ 〉 are:

t
W

d

d
, (A.2)11

11
ρ ρ= −

t
W

d

d
, (A.3)22

22
ρ ρ= +

t

Wd

d 2
. (A.4)12

12
ρ ρ= −

whereW 2 γ= Ω is the incoherent repumping rate. These equations ofmotion define the effective Linblad
operator used to describe the repumping process, equation (4):

{ }W
ˆ

2
2 ˆ ˆ ˆ ˆ ˆ , ˆ , (A.5)W

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ σ ρσ σ σ ρ= −+ − − +
with ˆ ˆ21σ σ=+ .

Take the specific case of strontium atoms in section 7 for example, the states P5s5p 3
0 and D5s4d 3

1,
separated by 2600 nm, realize the ∣ ↓ 〉 and ∣ ↑ 〉dipole levels. The intermediate state can be chosen as P4d5p 3

1,
which can be coupled to P5s5p 3

0 via external lasers and decays to D5s4d 3
1 at a rate 3.4 107× s−1,much faster

than the decay from D5s4d 3
1 to P5s5p 3

0, 2.9 105× s−1 [38, 69], allowing an effective population transfer from
P5s5p 3

0 to D5s4d 3
1. For thefluorescent organicmolecule implementation, we propose a two-level

configuration consisting of a vibrational level of the ground electronic potential for ∣ ↓ 〉 and the lowest vibronic
level of thefirst excited potential for ∣↑〉. The typical lifetime for this configuration is∼ns. In this case the

Figure A1.Three level configuration for the realization of the incoherent pumping process. States 1∣ 〉 and 2∣ 〉 correspond to the ∣ ↓ 〉
and ∣ ↑ 〉 levels of the two-level dipole system considered in themain text. State 3∣ 〉 is a short-lived excited state.Ω is the Rabi frequency
of the coherent driving laser, γ is the decay rate from 3∣ 〉 to 2∣ 〉, andΓ is the decay rate of level 2∣ 〉.
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incoherent pumping can be realized by driving an optical transition to a higher excited vibronic level 3 φ∣ 〉 = ∣ 〉
in thefirst excited potential, which decays on a timescale of ps to the state ∣ ↑ 〉 via non-radiative transitions [72].

In the case when the repumpingmechanism is achieved via radiative decay from 3∣ 〉 → ∣ ↑ 〉, a relevant
question to consider is the effect on synchronization if cooperative decay processes need to be accounted for. To
give a quantitative analysis of the role of collective incoherent pumping, herewe consider the pumping described
by

( )

( )

W

W

ˆ
2

2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (A.6)

W

a
a a a a a a

a b
a b b a b a

⎡⎣ ⎤⎦ ∑

∑

ρ σ ρσ σ σ ρ ρσ σ

η σ ρσ σ σ ρ ρσ σ

= − −

+ − −

+ − − + − +

≠

+ − − + − +



with η describing the effect of the collective pumping, which is 0 for individual pumping, and 1 if all processes are
collective. Themean-field order parameter is

( )
( )

Z
f NW W W

f NW

( ) ( )

2
, (A.7)

eff
2

eff

η

η
=

− − Γ − + Γ

−

which is decreased for any 0η > . As seen from the above expression and shown infigure A2 , although the
collective effect in incoherent pumping is to reduce coherences, and disrupt the collective behavior induced by
feff , it is still possible tomaintain afinite order parameter. Individual repumping is therefore themost favorable
case but some degree of collectiveness is tolerable.

Practically, the collective pumping can be suppressed by choosing intermediate states appropriately.
Consider the strontium atoms discussed in section 7 for example, if the state P4d5p 3

1 is chosen as 3∣ 〉, the
wavelength of decay 3∣ 〉 → ∣ ↑ 〉 is 52223λ = nm,much smaller than the dipole transitionwavelength 2600λ =
nm .As shown in figure 5(a), synchronization can happenwith an inter-particle spacing a∼0.2 λ= 500 nm,
which satisfies a 123λ ∼ , therefore the collective effect in the pumping process can bemuch reduced.On the
other hand if the decay from 3∣↑〉 − ∣ 〉 is non-radiative, as it is the case for organicmolecular aggregates, even for
arrayswith average dipole-spacing of only tens of nanometers the off-diagonal terms can be neglected. There the
decay is through vibrational relaxation or charge transfer, so there is no photon exchange between dipoles that
can lead to collective incoherent repumping.

Appendix B.Mean-field approach

Themean-field ansatz, ˆ ˆa aρ ρ= ⊗ , reduces the dynamics to N3 coupled nonlinear differential equations
presented in themain text. In themost generic casewe define local order parameters to take into account the
effect of the inhomogeneous couplings:

X f S Y g Sr re ( ) e , e ( ) e . (B.1)a

b a

ab b a

b a

ab b
i i i ib b∑ ∑= =φ φΦ

≠

⊥ Φ

≠

⊥

If the local order parameters vary slowly over the system size, and can be approximated to be the same for all
dipoles one can define X f Z Y g Z,a aeff eff≈ ≈ , where the global order parameterZ is defined as

Figure A2.Phase diagramwith different types of incoherent pumping. The order parameter is obtained frommean-field solution, and
is plotted forN=100 dipoles and f Neff = Γ, with g r( ) 0ab = and 0aδ = . The black line is for individual pumping, the red line is for
collective pumpingwith 0.01η = , and the blue line is for 0.1η = . The individual pumping leads to themost synchronized solution,
but synchronization remains if the dissipative interaction is the dominant incoherentmechanisms.
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Z Se e
N a a

i 1 i a∑= φΦ ⊥ and the effective couplings are given by f f Nr( ) ( 1)
a b a abeff ∑ ∑= −≠ and

g g Nr( ) ( 1)
a b a abeff ∑ ∑= −≠ .

The steady-state solution Ż 0= , tω̄Φ = leads to two self-consistent equations for the order parameterZ
and the collective frequency ω

( )
( ) (

Z
ZP f Q g

NQ f Z g Z Q

2

4 2 2
, (B.2)
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eff eff
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2 2
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2 2 2

⎡⎣ ⎤⎦
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∑
δ ω

δ ω
=

+ +

+ + + +
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0
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4 2 2
, (B.3)

a

N a

a

eff eff

2
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2 2

eff
2 2 2

⎡⎣ ⎤⎦
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∑
δ ω

δ ω
=

− +

+ + + +

which can be evaluated in the N → ∞ limit as integrals when the detunnings aδ have a knowndistribution.
Wenote that in this treatment, when g r( ) 0ab ≠ , the elastic couplings simply induce a global frequency shift

g Q f(2 )eff effω = that can be eliminated bymoving to a rotating frame.However, as discussed in themain text
the role of elastic interactions is not just to introduce a simple rotation. In fact the elastic terms tend to generate
entanglement and correlations which can not be capture by a simplemean-field treatment. Therefore the
applicability of themean-field solution is restricted to regimeswhere elastic interactions are highly suppressed.

AppendixC. Cumulant expansion approach and two-time correlation between dipoles

The cumulant expansionmethod is a useful theoretical tool for including correlation effects beyond themean-
field approximation [29, 78, 79].We keep two-point correlations such as ˆ ˆa

z
b

z, , , ,σ σ〈 〉+ − + − , but factorize three-
point correlations and higher [80]:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2 ˆ ˆ ˆ . (C.1)

a b c a b c a b c a c b

a b c

σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ
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− 〈 〉〈 〉〈 〉

α β γ α β γ α β γ α γ β

α β γ

This factorization closes the set of dynamical equations ofmotion for all single particle observables ˆa
z, ,σ〈 〉+ − and

equal time two-point correlations. Two-time correlation functions can be computed by solving [55]:
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wherewe have introduced the approximation t t t t t tˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )a
z

j b a
z

j bσ τ σ τ σ σ σ τ σ〈 + + 〉 ≈ 〈 〉〈 + 〉+ − + − . Com-
parisonswith exact numerical solutions show that the cumulant expansion captures well the steady-state
behavior for inhomogeneous couplings f r( )ab , provided the elastic couplings g r( )ab are sufficiently small. In
figureC1 we compute the pair-wise two-time correlation function, Z t( ) lim ( ˆ ( )a b t a, τ σ τ≡ 〈 +→∞

+

t t tˆ ( ))( ˆ ( ) ˆ ( ))b a bσ τ σ σ+ + + 〉+ − − , using both the cumulant expansion and the exact solution. The decay rate of
these correlations, Z A( ) ea b, τ = γτ− , encodes information about the spectral coherence of the emitted radiation
(note that here 0ν = ). The result shows that γΓ exhibits the same dependence onW Γ asZQ.

AppendixD. Conditional evolution, entanglement and quantum correlations

An individual experimental realization can be considered as a single trajectory, whose evolution can be quite
different from the ensemble averaged solution of themaster equation. Tracking the evolution of an individual
trajectory is equivalent to performing continuousmeasurements that collect the record of the emitted photons,
for example homodynemeasurements. The conditional evolution of the system subject to continuous
measurements can bemodeled by themethod of quantum state diffusion [55, 81]. For a single run the state of
the system remains pure, ĉρ ψ ψ= ∣ 〉〈 ∣, but the average overmany trials reduces the system into amixed state and
recovers the densitymatrix obtained from themaster equation.

To probe the entanglement of the dipoles, infigure 2we calculate the average quantumFisher information
for each individual trajectory [53, 54]
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( )( ) ( ) ( ) ( )F F J F J F Jˆ
1

3
ˆ ; ˆ ˆ ; ˆ ˆ ; ˆ ,Q c Q c x Q c y Q c zρ ρ ρ ρ= + +

where F ( ˆ ; ˆ ) 4( ˆ ˆ )Q c
2 2ρ ψ ψ ψ ψ= ∣ 〉 〈 ∣ − ∣ 〉 〈 ∣   , and Ĵx y z, , are collective angularmomentumoperators.

States with zero entanglement can still be nonclassical. Two systems are correlated if they share information
with each other. The total amount of correlation can be quantified by the quantummutual information

S S SA B AB= + − , where i is the vonNeumann entropy of the subsystem i A B AB{ , , }∈ (AB is the total
system spanned byA andB together) , Tr[ ˆ log ˆ ]i i i2ρ ρ= − , with îρ the reduced densitymatrix of the subsystem
i. A value varying between 0 and 2 is obtainedwhenA andB are pure states ormaximally correlated respectively.
Themutual information can be separated into a classical and a quantumpart. The classical part is

max{ }B A B B A= −   . Here B A is the vonNeumann entropy of subsystemB conditioned on the
measurement performed onA and max representsmaximumvalue obtainable over all localmeasurements on
A. The quantumpart, known as the quantumdiscord, B A B A= −   , measures the amount of correlations
that exceed the classical part and characterizes the ‘quantumness’ of the system [61]. A state with nonzero
quantumdiscord behaves in away intrinsically non-classical, since a localmeasurement performed on one of its
subsystems can disturb thewhole system. In order to calculate B A , we consider a set of vonNeumann

measurements nˆ 1
2

(1 · )k
A

k
A

1,2 σΠ = ± ⃗ ⃗= with n 1k
2∣ ⃗ ∣ = , made on the subsystemA andminimize the

corresponding conditional entropy p STr[ ( ˆ )]B A k k B1
2

k
Aρ= ∑ = Π , where p Tr[ ˆ ˆ], ˆk k

A
B k

Aρ ρ= Π Π pTr [ ˆ ˆ]A k
A

kρ= Π
[61]. Infigure 2(e) we calculate themutual information from  and the quantumdiscord from  using as
subsystemsA andB a pair of dipoles, a and b respectively.
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